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(A.3) reduces to 
~rl/E H 

[F(H)I~x~ = e(H): X Sp(H) 2 
p=l 

m 
--6(H) Z [S,(H)I:. 

p=l 
(A.5) 

Now imagine that the complete molecular group of 
size N / m  is replaced by a smaller fragment of size 
n, so that the unit cell also contains m ( N / m - n )  
randomly distributed atoms. If (A.5) is modified to 
include their contribution, it follows that 

N-rim 
IF(H)I~x~= e(H) Z Z]+e(H) ~ IS~(H)I :. 

j= l  p=l 
(A.6) 

Finally, expression of IS~(H)] ~ in terms of the 
interatomic vectors r j - r k  results in the desired 
expression (4). 
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Abstract Introduction 
The molecular dynamics (MD) method has been 
adapted for refinement of the structures of helical 
macromolecular aggregates against X-ray fiber 
diffraction data. To test the effectiveness of the 
method, refinements of the tobacco mosaic virus 
structure were carried out against a set of simulated 
fiber diffraction intensities using the MD method as 
well as the conventional restrained least-squares 
(RLS) method. The MD refinement converged to a 
very low R factor and produced a structure with 
generally statisfactory stereochemistry, while the RLS 
refinement was trapped at a local energy minimum 
with a larger R factor. Results suggest that the 
effective experimental radius of convergence of the 
MD method is significantly greater than that of the 
RLS method. Even when the initial structure is too 
far from the true structure to allow direct refinement, 
the MD method is able to find local minima that 
resemble the true structure sufficiently to allow 
improved phasing and thus lead to interpretable 
difference maps for model rebuilding. 

Fiber diffraction has been a very effective method for 
the determination of the molecular structures of 
filamentous macromolecular assemblies such as 
viruses, cytoskeletal elements, nucleic acids and poly- 
saccharides. The component parts of these assemblies 
are often difficult or impossible to crystallize because 
of their natural tendency to form filaments and, even 
if they can be crystallized, the crystal structures do 
not usually reveal the important intermolecular inter- 
actions that are often the most biologically significant 
aspect of the molecular structure. Fiber diffraction is 
therefore the preferred method of analysis for these 
systems. 

The defining property of a fiber diffraction speci- 
men is that the diffracting units are randomly oriented 
about an axis, the fiber axis. Specimens may in fact 
be fibers, oriented gels or even stacks of sheet-like 
structures such as membranes. As a result of the 
random orientation about the axis, the fiber diffrac- 
tion pattern is the cylindrical average of the diffraction 
pattern to be expected from one particle (in the 
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absence of interference effects) or from a fully ordered 
array of particles (in the case of a crystalline fiber). 
The amount of information lost because of this 
averaging depends on the size and symmetry of the 
diffracting particles and on the resolution of the data. 
For tobacco mosaic virus (TMV), the effective number 
of observable diffraction data at 3 A resolution is 
reduced by a factor of about 2.5; for the bacteriophage 
Pfl at 3 ~ resolution, the corresponding factor is 1.7 
(Makowski, 1982). These factors can be much higher 
for lower-symmetry systems such as microtubules but 
for relatively symmetric systems such as helical 
viruses they are not so high as to preclude structural 
analysis and refinement. 

Analysis of fiber diffraction patterns may con- 
veniently be considered in two stages: the separation 
of the cylindrically averaged intensities and determi- 
nation of the corresponding phases to obtain an initial 
model, and the refinement of that model to maximize 
agreement between the calculated and observed 
diffracted intensities. The first stage may be omitted 
in cases where the diffracting asymmetric unit is of 
relatively low molecular weight (for example, nucleic 
acids and polysaccharides); in these cases, an 
effective approach has been to postulate one or more 
models and to refine competing models separately. 
This approach is completely impracticable, however, 
for large structures such as viruses. Solutions better 
suited to large asymmetric units have included a 
multidimensional analog of protein crystallographic 
isomorphous replacement (Stubbs & Diamond, 1975; 
Namba & Stubbs, 1985), sometimes supplemented by 
data from the fine splitting of the layer lines in the 
diffraction patterns (Stubbs & Makowski, 1982), and 
the use of neutron scattering from proteins with 
specific amino acids deuterated (Nambudripad, Stark 
& Makowski, 1991). 

The principal concern in the refinement of struc- 
tures against fiber diffraction data is, as one might 
expect, the relatively small number of independent 
data available. Unrestrained refinement does not lead 
to stable stereochemically reasonable solutions, so it 
is necessary to incorporate stereochemical informa- 
tion such as bond lengths and angles into the 
refinement procedure. Two algorithms in particular 
have been effective: the linked-atom least-squares 
(LALS) method of Arnott and his collaborators 
(Arnott & Wonacott, 1966; Smith & Arnott, 1978) has 
been extensively used in the refinement of nucleic 
acids and polysaccharides, while the restrained least- 
squares (RLS) method of Hendrickson and Konnert 
(Hendrickson, 1985), which has been widely used in 
protein crystallography, has been adapted for use 
with fiber diffraction data (Stubbs, Namba & 
Makowski, 1986) and used in the determination of 
the structures of TMV (Namba, Pattanayek & Stubbs, 
1989) and Pfl (Nambudripad & Makowski, 1989). 
These refinement methods have met with considerable 

success but they suffer from the disadvantage that 
successful refinement depends heavily on the 
accuracy of the starting model. In practice, we have 
found that the radius of convergence of RLS 
refinement is significantly less than it is in crystal- 
lography. Even in crystallography, the limited radius 
of convergence of RLS refinement is a problem 
(Brfinger, Kuriyan & Karplus, 1987) and for fiber 
diffraction, in which the data sets are significantly 
smaller than crystallographic data sets from compar- 
ably sized structures, the problem appears to be much 
more serious. 

In recent years, the use of molecular dynamics in 
conjunction with refinement against diffraction data 
has been very effective in crystallography (Br/inger, 
Kuriyan & Karplus, 1987; Br/inger, Karplus & Petsko, 
1989). In particular, molecular dynamics refinement 
has been reported to increase significantly the radius 
of convergence for refinement of crystallographically 
determined protein structures (Br/inger, Kuriyan & 
Karplus, 1987). In molecular dynamics simulations, 
Newton's equations of motion are solved for the 
atoms in a molecule, using forces derived from poten- 
tial functions that describe the bonding and non- 
bonding interactions between the atoms. X-ray 
diffraction data can be used as effective additional 
potential terms, thus restraining the structure to agree 
with the observed data. In the now widely used pro- 
cedure of simulated-annealing refinement (Br/inger, 
Kuriyan & Karplus, 1987), the energy of the protein 
structure is minimized then the process of heating the 
protein is simulated. At high temperatures, energy 
barriers between the starting model and structures of 
lower potential can be overcome; in this way, the 
radius of convergence of the refinement is increased. 
Finally, the structure is cooled ('annealed'). In this 
paper, we describe an adaptation of the simulated- 
annealing application of molecular dynamics, using 
the program X-PLOR (BriJnger, Kuriyan & Karplus, 
1987), for use with fiber diffraction data. 

Theory 

Molecular dynamics refinement 

The potential energy of a molecule may be 
described by an empirical energy function, for 
example 

E= Eb + Ea+ Et+ Enb, (1) 

where Eb is the potential energy due to deviations 
from ideal covalent bond lengths, Ea is due to devi- 
ations from ideal covalent bond angles, Et (torsion) 
is due to rotations about bonds and Enb is due to 
interactions between non-bonded atoms (Brooks et 
aI., 1983; Karplus & Petsko, 1990). Eb and Ea are 
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usually modeled by simple harmonic potentials, 

Eb=~, kb(r-- ro) 2, 

E~ = E k,,( O -  Oo) 2, 

where the summations are over all bonds and bond 
angles, r and 0 are the bond lengths and angles, and 
ro and 0o are ideal bond lengths and angles. E, for 
rotations (~o) about single bonds is modeled by a 
cosine function such as 

E , =  2 k,[1 +cos (n~o)], 

where n is a small integer, depending on the nature 
of the atoms forming the bond. For restricted rota- 
tigns, contributions to E, may be modeled as har- 
monic terms; these terms ensure planarity of rings, 
peptide bonds and other fixed geometric structures. 
The constants kb, ka and k, (force constants) deter- 
mine the flexibility of the corresponding molecular 
features. Enb, the non-bonded interaction term, 
includes contributions from electrostatic interactions 
and from van der Waals interactions. One of the 
simplest representations of Enb is 

Enb = 2 ( A /  r ~2- B~ r 6 -t- qaq2/ Dr), 

in which r is the distance between atoms, q~ and q2 
are the electrostatic charges of the atoms, D is an 
effective dielectric constant and A and B are constants 
depending on the interacting atoms. This term com- 
bines the Lennard-Jones 6-12 potential (having a 
minimum at the sum of the van der Waals radii of 
the two atoms) with the electrostatic attraction or 
repulsion between the atoms. 

E is a function of the atomic coordinates of the 
molecule under consideration. A molecular dynamics 
simulation of the atomic motions may be carried out 
by solution of Newton's equations of motion for the 
atoms using forces derived from E. The energy E may 
be minimized as a function of the atomic coordinates 
to find the most stable molecular conformation. E is, 
of course, a very complicated function and without 
more information a molecule as complex as a protein 
would generally find its way into a local minimum in 
the potential-energy function, rather than the global 
minimum. This problem can often be overcome by 
adding 'effective potential energy' terms to E, in which 
the difference between experimental observations and 
their values calculated from the atomic coordinates 
is considered to contribute to the potential energy. 
The use of X-ray crystallographic diffraction data in 
this way has been particularly effective for the 
refinement of the structures of crystalline proteins. In 
the program X - P L O R  (Briinger, Kuriyan & Karplus, 
1987), the effective potential-energy term 

E crystal = S 2 [ Fobs(hkl) - Fcalc(hkl) ]z (2) 

is added to E in the program C H A R M M  (Brooks et 
aL, 1983). The summation is over observed and calcu- 

lated crystallographic structure factors; the scale fac- 
tor S is chosen so that the gradient of Ecrystal is 
comparable to the gradient of E in (1). 

Simulated annealing, which involves minimization 
of potential-energy terms such as those in (1) and 
(2), has been used with great effect in the refinement 
of the structures of numerous crystalline proteins in 
recent years (Karplus & Petsko, 1990). 

Fiber diffraction theory 

Fiber diffraction specimens give rise to X-ray 
diffraction patterns characterized by layer lines, 
indexed by l, whose separation depends inversely on 
the length c of the repeating structural unit along the 
fiber axis. A particularly good example is shown in 
Fig. 1 of Namba & Stubbs (1985). Because of the 
cylindrical averaging, a fiber diffraction pattern is 
two-dimensional: all of the information is contained 
in a plane of reciprocal space. In the absence of 
interparticle interference effects, the diffracted 
intensities are distributed continuously along the 
layer lines. 

The intensity at reciprocal-space radius R on layer 
line l is 

I ( R , l ) = c ~ ( g , l ) 2 = ~  G, ,~(R)G*,(R)  (3) 
t l  

(Waser, 1955; Franklin & Klug, 1955), where n is the 
order of the Bessel functions Jn that contribute to the 
complex Fourier-Bessel structure factor G (Klug, 
Crick & Wyckoff, 1958). The number of significant 
terms contributing to the intensity in (3) is limited by 
the selection rule (see below) and depends on the 

symmetry and dimensions of the diffracting particle 
and on the value of (R, l). For example, for TMV at 
2.9 A resolution, there can be as many as eight terms. 
As a convenient notation, the vector ~ is defined as 
the 2M-dimensional vector whose components are 
the real and imaginary components of the M sig- 
nificant G terms contributing to a particular intensity 
l ( R , l )  in (3). 

Equation (3) can be compared with the crystallo- 
graphic equation 

I ( h, k, l) F2hkl = * = FhkYhkt. (4) 

For a helical structure, the integer n is restricted by 
the selection rule l= tn + urn, where rn is an integer 
and there are u subunits in t turns of the helix (Coch- 
ran, Crick & Vand, 1952). If the symmetry of the 
helical structure includes an N-fold rotation about 
the helix axis, n is further restricted to be a multiple 
of N (Klug, Crick & Wyckoff, 1958). Helical sym- 
metry has been discussed by Klug et al. (1958). 

The Fourier-Bessel structure factor can be 
expressed in terms of the atomic coordinates (r, ~o, z), 

G , , . , ( R ) = Y . f J , , ( 2 ~ l ) R ) e x p ( - % n + 2 1 r l z J c ) ,  (5) 
J 



H O N G  WANG AND GERALD STUBBS 507 

where fj is the scattering factor for atom j and the 
summation is over all atoms in the helical asymmetric 
unit (Klug et al., 1958). If  each G is known, an 
electron density map may be obtained from the 
relationships 

OO oo 

o(r, ~p,z)=(1/c) E Y~ g,,,t(r) 
I = - - o 0  n = - - o o  

×exp[i(mp-27rlzJc)] (6) 

and 
co 

g,,,t(r)= ~ G,,,,(R)J,(2orRr)2orR dR, (7) 
0 

where p(r, ¢, z) is electron density, r, ¢ and z are 
cylindrical coordinates in real space, and c is the 
repeat distance in the diffracting structure. The 
Fourier-Bessel transform represented by (6) and (7) 
is analogous to the Fourier transform of the F terms 
in crystallography. 

Implementation 
Adaptation of molecular dynamics refinement to use 
fiber diffraction data requires two major changes from 
the crystallographic application. The more obvious 
is that an effective potential-energy term, functionally 
equivalent to  Ecrystal , must take account of the 
different forms of crystalline and fiber diffraction 
data, as expressed by (3) and (4). The other change 
stems from the fact that, in the filamentous structures 
that usually give rise to fiber diffraction patterns, the 
helically repeating asymmetric units are often 
covalently connected. These covalent connections 
must be taken into account in calculating Eb, Ea 
and E,. 

We have developed a package of Fortran sub- 
routines for the refinement of the structures of helical 
macromolecular aggregates against X-ray fiber 
diffraction data. The package has been incorporated 
into X-PLOR,a macromolecular-refinement program 
that uses X-ray crystallographic diffraction data or 
nuclear magnetic resonance data (Brfinger, Karplus 
& Petsko, 1989; Briinger, 1990). The fiber diffraction 
package was desgined to be a fully compatible module 
of X-PLOR, so that most of the features in X-PLOR 
suitable for crystal-structure refinement and analysis 
can be utilized for fiber-structure refinement and 
analysis. These features include topology (con- 
nectivity) and parameter definitions, empirical poten- 
tial-energy calculations, structural restraints and con- 
straints, energy minimization, molecular dynamics 
refinement, structural and energetic analyses and data 
manipulation. The fiber diffraction package also 
includes a subroutine to deal with covalent bonds 
between symmetrically equivalent subunits in the 
empirical potential-energy calculations. 

To include fiber diffraction information in a 
molecular dynamics refinement or energy minimiz- 
ation, the discrepancy between observed and calcu- 
lated intensities in fiber diffraction is treated as an 
effective energy, 

x wqdobs dR , (8) 

where k is a scale factor, Sy is a weight that makes 
the gradient of the effective energy comparable to the 
gradient of the empirical potential energies, w is the 
individual weight for each observed intensity lob s and 
Ica~c is a calculated intensity [equations (3) and (5)]. 
The scale factor k can be calculated by least-squares 
techniques, 

k ~__ ~ W(.~obs C4~calc/R~ 2 W q , ~ o b s -  
R 

In fiber diffraction, the deconvoluted intensities are 
usually measured at small sampling intervals along 
the layer lines, which are constant in reciprocal space. 
The integrals in (8) then become summations. 

Calculations of Fourier-Bessel structure factors 
and their derivatives are most easily carried out in 
cylindrical coordinates. The orthogonal atomic coor- 
dinates are therefore transformed into cylindrical 
coordinates before the structure-factor calculations. 
After these calculations, the derivatives of a structure 
factor (OG/Orj, OG/Oq~j, OG/Ozj) must be transformed 
back to orthogonal coordinates for molecular 
dynamics calculations or energy minimizations using 
the chain rule, 

and 

0~- \ -~- r j  ] \~y-jyj/+ (0~j )  \Oyj," 

The most time-consuming part of the refinement 
algorithm is the calculation of Fourier-Bessel struc- 
ture factors and their derivatives, since there is no 
algorithm for Fourier-Bessel structure factors of com- 
parable efficiency to the fast Fourier transform for 
Fourier structure factors in crystallography. The 
major problem is the evaluation of Bessel functions. 
To reduce computational time, a Bessel function look- 
up table is used and the function is evaluated by 
linear interpolation from the table entries. A complete 
Bessel look-up table would be impracticably large, 
so the table is generated for one layer line at a time. 
The intensities on any one layer line are derived from 
a relatively small number of Bessel functions, depend- 
ing on the resolution limit of the diffraction data and 
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the symmetry and radius of the diffracting particle. 
Use of look-up tables can be suppressed by not setting 
the look-up flag, as in the crystallographic application 
of X-PLOR. 

The program accommodates simple helical sym- 
metry and cyclic symmetry about the fiber axis. The 
only other possible symmetry element in a helical 
structure is a twofold rotation about an axis perpen- 
dicular to the helix axis; this element has not yet been 
included in the symmetry elements considered by the 
program. Interparticle interactions and interactions 
with bulk solvent have not been included. The sym- 
metry of the helical structure is utilized to reduce the 
computational time required for calculations of non- 
bonded interactions between atoms in different sub- 
units. In crystallography, the search for non-bonded 
atom pairs is carded out throughout the entire unit 
cell. However, the number of symmetry-related sub- 
units in a helix repeating unit can be very large. If 
the shape of the individual subunits is reasonably 
simple, it is possible first to identify the subunits that 
are within range for non-bonded interactions and 
consider only those subunits in the calculations. In 
TMV, for example, there are 49 subunits in the unit 
cell but a given subunit makes contacts with only 6 
neighboring subunits. 

Interactions between subunits in some helical sys- 
tems involve not only non-bonded interactions but 
also covalent bonds. For example, in TMV, a single- 
stranded RNA molecule of approximately 6400 
nucleotides follows the right-handed helix of coat 
protein subunits, with three nucleotides bound to 
each protein subunit. We refer to this type of linkage 
as a symmetric linkage. During the structure 
refinement, the continuity of the RNA molecule in 
the structure can be preserved by the introduction of 
restraints on the bond lengths and angles involving 
atoms in symmetry-related subunits. This is done by 
modifying the topology table and the table of non- 
bonded intersubunit interactions so that the energies 
associated with symmetric linkages are included in 
Eb, Ea and Et. 

A modified parameter file was used in place of the 
parameter file PARAM16.DNA in X-PLOR. In appli- 
cations of the program to the refinement of virus 
structures (see below), the original parameters were 
found to be insufficient to maintain the planarity of 
nucleotide bases. In the replacement file, force con- 
stants for torsion angles and improper rotations 
similar to those oftryptophan and tyrosine were used; 
these force constants are much larger than those of 
the nucleotides in the original PARAM16.DNA par- 
ameter file. The modified parameter file produced 
stereochemically satisfactory structures. 

The fiber diffraction package has been installed 
and tested on VAX/VMS and SGI IRIS/340 com- 
puters. Several rod-shaped helical plant viruses 
(Wang, Pattanayek & Stubbs, 1992) and a filamentous 

bacteriophage (Nambudripad & Makowski, 1992) 
have been refined using this package. 

Refinement of tobacco mosaic virus 

The structure of TMV was used to test the refinement 
procedure, since this virus structure has been deter- 
mined by fiber diffraction methods at relatively high 
resolution (Namba, Pattanayek & Stubbs, 1989). 
TMV is a rod-shaped RNA virus 3000 ~ in length 
and 180 ~ in diameter. Approximately 2100 identical 
coat protein subunits form a right-handed helix with 
49 subunits in three turns. The axial repeat distance 
is 69.0 A. A single-stranded RNA molecule follows 
the basic helix between the coat protein subunits at 
a radius of about 40 ~ .  The TMV structure was refined 
at 2.9 ~ resolution to an R factor of 0.097 using RLS 
by Namba, Pattanayek & Stubbs (1989). Fiber 
diffraction R factors are inherently lower than crys- 
tallographic R factors, because of the cylindrical 
averaging of the data but, for a structure having the 
symmetry and dimensions of TMV at 2.9 ~ resol- 
ution, the R factor to be expected from a set of atoms 
randomly distributed within the radial limits of the 
virus would be about 0.32 (Stubbs, 1989; Millane, 
1989). The final TMV structure included 158 amino 
acid residues, three nucleotides, 71 water molecules 
and two calcium ions. 

For testing purposes, the model of Namba, Pat- 
tanayek & Stubbs (1989) with solvent molecules and 
calcium ions excluded for simplicity was used as a 
target structure. It is referred to here as NPS. A 
simulated intensity data set was generated between 
10.0 and 2.9 A, resolution from the NPS model. To 
simulate errors such as might be contained in an 
unrefined virus structure, NPS was perturbed in a 
0.4ps molecular dynamics simulation at 500K, 
without the restraint imposed by the fiber diffraction 
effective energy. In addition, the conformation of the 
loop between residues 103 and 106 was altered (Fig. 
1 a), and the side chain of Arg 122 was substantially 
perturbed (Fig. lb). The R factor for this model, 
called the initial model, was 0.292. The r.m.s, differen- 
ces between the initial model and the NPS atomic 
coordinates are shown for each residue in Fig. 2(a); 
the average r.m.s, difference was 1.79 A, (see Table 1). 

Before molecular dynamics (MD) refinement was 
carried out, the initial model was idealized by energy 
minimization without the fiber diffraction effective 
energy. This released the tension caused by intra- and 
intersubunit non-bonded close contacts. A weight of 
2.2 x 10  6 for the fiber diffraction effective energy IS: 
in (8)] was estimated using Briinger's method 
(Br/inger, 1990). Unit weight w [(8)] was assigned to 
all the diffraction data. Molecular dynamics 
refinement was carried out using the slow-cooling 
protocol of Br/inger, Krukowski & Erickson (1990); 
the temperature was slowly decreased from 4000 to 
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200 K over a period of 0.76 ps. The temperature was 
controlled using the T coupling method (Berendsen, 
Postma, van Gunsteren, DiNola & Haak, 1984; 
Brfinger, Krukowski & Erickson, 1990). After the MD 
refinement, the structure was further refined by 200 
steps of energy minimization. Simulated data between 
10.0 and 2.9 A resolution were used in the refinement. 
Intersubunit interactions required consideration of 
six additional subunits, located -17, -16,  -1 ,  +1, 
+16 and +17 subunits from the originating subunit 
in the viral helix. In the TMV structure, these subunits 
are sufficient to cover all possible interactions. The 
continuity of the RNA molecule was maintained dur- 
ing refinement by restraining the one bond length 
(P-O3') and four bond angles (C3'-O3'-P, O3 ' -P-  
O1P, O3'-P-O2P and O3'-P-O5') affected by the 
symmetric linkage. During the refinement, the R fac- 
tor was reduced from 0.292 to 0.070 (Fig. 3). 

The initial model was also refined against the simu- 
lated intensity data by the restrained least-squares 
(RLS) method (Hendrickson, 1985; Stubbs, Namba 
& Makowski, 1986). Again, six additional subunits 
were considered in order to restrain close contacts 
and the bond distances around the symmetric linkage 
were restrained to preserve the continuity of the RNA 
molecule. This refinement (without manual rebuild- 
ing) converged to an R factor of 0.143, with compar- 
able stereochemistry to the MD-refined model. 

The R-factor distributions for the initial, RLS- 
refined and MD-refined models are shown in Fig. 4. 

In general, the geometry of the MD-refined model 
is excellent. The average r.m.s, deviations of covalent 
bond lengths (0.015 ~ )  and angles (2.0 °) from ideal 
values are comparable with those found in well 
refined structures using either crystal or fiber diffrac- 

(a) 

(b) 

A 

Fig. 1. Stereoviews of parts of the reference structure (thick lines), 
called NPS in the text, and the initial model for the refinement 
tests (thin lines). (a) The 103-106 loop and (b) residue Arg 122. 

tion data. The deviations are plotted as a function of 
residue number in Fig. 5. Some of the C~-C,  bonds 
in the refined model are systematically longer than 
the ideal value of a carbon-carbon single bond 
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Fig. 2. R.m.s. differences between the atomic coordinates of 
different models as a function of residue number in the protein. 
Thick lines: main-chain differences. Thin lines: side-chain 
differences. (a) Initial model and NPS. (b) MD-refined model 
and NPS. (c) Initial model and MD-refined model. 
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Table 1. R.m.s. differences between atomic coordinates in different TMV models 

NPS is the 'true' structure, the target of  the refinements. The initial model was obtained by perturbing NPS and then refined by both 
the MD and RLS methods. MD is the MD-refined model; RLS is the RLS-refined model. R.m.s. distances between corresponding 
atoms in the two models listed on each line are in/~.  H atoms are not included. 

Distance from target before refinement 
Distance from target after refinement 

Distance moved during refinement 

Protein Protein 
Models main chain side chain RNA All 

Initial NPS 1.39 1.91 2.79 1.79 
MD NPS 1.28 1.85 1.65 1.64 
RLS NPS 1.30 1.83 2.34 1.69 
MD Initial 1.06 1.64 2.80 1.53 
RLS Initial 0.36 0.52 1.27 0.53 

(1.540 A). The bond angles around these elongated 
C~-Cl3 bonds also deviate from ideal values. Most of 
the long bond distances are found in residues for 
which the main-chain dihedral angles are in forbidden 
regions of the Ramachandran plot. 

The r.m.s, difference between the atomic coordi- 
nates in the MD-refined model and NPS was 1.64 ,~t, 
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Fig. 3. R-factor changes during the molecular dynamics refinement 
using the slow-cooling protocol. 
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Fig. 4. R-factor distributions within refinement ranges between 10 
and 2.9/~, for the initial model, the RLS-refined model and the 
MD-refined model. 

reduced slightly from 1.79 A. The difference between 
the RLS-refined model and NPS was 1.69/k. Differen- 
ces for main-chain protein, side-chain protein and 
RNA atoms, as well as r.m.s, shifts during refinement, 
are given in Table 1. The r.m.s, differences between 
the MD-refined model and NPS are plotted as a 
function of residue number in Fig. 2(b). The differen- 
ces between the initial model and the MD-refined 
model are shown in Fig. 2(c). As may be seen in Fig. 
2, the r.m.s, differences for the altered loop between 
residues 103 and 106 were smaller than those in the 
initial model,  but the overall conformation was not 
corrected [compare Figs. l ( a )  and 7(a)].  The r.m.s. 
deviations of residues in the a-helical regions of the 
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Fig. 5. R.m.s. deviations from ideal values of  bond lengths and 
angles in the MD-refined model as a function of residue number. 
(a) Bond lengths. (b) Bond angles. 
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MD-refined model were smaller than those in the 
initial model. 

Electron density maps were calculated using 
coefficients 6 ~3ob~- 5 (~calc and q3ob~- ~calc, where (6ob~ 
was taken from the simulated intensity data set. 
6~obs--5~calc maps are similar to crystallographic 
2Fob s -- Fcalc electron density maps (Namba & Stubbs, 
1987). 6 ~obs -- 5 ~calc maps of the region in the vicinity 
of Arg 90 (part of the RNA binding site), calculated 
at 2.9/~ resolution, are shown in Fig. 6 and ~qob~ - (g¢~l¢ 

maps of the 103-106 loop region are shown in 
Fig. 7. ~cale was taken from the MD-refined model, 
the RLS-refined model and the initial model. 

Although the MD refinement did not correct the 
conformation of the 103-106 loop, the difference 
maps (Fig. 7a) clearly showed the correct position 
of the chain in this region. In contrast, difference 
maps based on the initial model (Fig. 7c) were com- 
pletely uninterpretable and, while difference maps 
based on the RLS model (Fig. 7b) did show some 
indication of the error, it seems most unlikely that 
those maps could have been interpreted without 
knowledge of the true structure. Neither the refined 
structure nor the difference maps indicated the correct 
conformation of the Arg 122 side chain (not shown). 
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Fig. 6. Stereoviews of 6 ~obs -- 5 ~dcal¢ electron density maps at 2.9 ,~ 
resolution of  the TMV coat protein in the vicinity of Arg 90. 
Thin lines represent the contoured electron density. Thick lines 
represent the corresponding models. (a) qdcal¢ calculated from 
the MD-refined model. (b) adcatc calculated from the RLS-refined 
model. (c) ~=l~ calculated from the initial model. 

(b) 

(c) 

Fig. 7. Stereoviews of difference electron density maps %bs-- ~dcalc 
of the TMV coat protein in the vicinity of the 103-106 loop. In 
the density maps, the solid lines represent the contoured electron 
density at the 5tr level; the dashed lines are at the -5 t r  level. 
Thick lines represent the NPS model. (a)  %alc calculated from 
the MD-refined model. Thin lines represent the MD-refined 
model; (b) q3=i c calculated from the RLS-refined model. Thin 
lines represent the RLS-refined model. (c) ~'~calc calculated from 
the initial model. Thin lines represent the initial model. 
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Discussion 

Molecular dynamics refinement of the TMV 
structure converged to a very low R factor and 
produced a structure with generally satisfactory 
stereochemistry. Gross structural errors in the model 
were not corrected automatically but the model was 
improved sufficiently to allow these errors to be cor- 
rected by reference to difference electron density 
maps. 

The most significant effect of MD refinement on 
the structure determination was the improvement in 
the quality of the electron density maps (Figs. 6 and 
7). In the 6 C~obs -- 5 (~calc map of the initial model (Fig. 
6c), interpretable electron density generally appeared 
only in the main-chain regions of regular secondary 
structures. Side-chain structures could not be deter- 
mined from these maps. In contrast, in the 6~obs - -  
5~calc map of the MD-refined model (Fig. 6a), both 
the main chain and the side chains closely fit the 
electron density. The large errors in the conformation 
of the 103-106 loop could easily be recognized in the 
~obs--cgcal¢ map (Fig. 7a). More subtle errors, such 
as the altered conformation of the side chain of 
Arg 122, were not detected at this stage of refinement 
but our experience with other virus structures (Pat- 
tanayek & Stubbs, 1992; Wang, Pattanayek & Stubbs, 
1992) has been that errors such as these can be found 
and corrected after one or more cycles of rebuilding 
and further refinement. 

Comparison of the R factors of the MD-refined 
model (0.070) and the RLS-refined model (0.143) as 
well as the difference maps obtained from the two 
refined models (Figs. 6 and 7) suggests that the 
effective experimental radius of convergence of the 
MD method is significantly greater than that of the 
RLS method. The r.m.s, difference between the atomic 
coordinates of the model and those of the true struc- 
ture was reduced only slightly during MD refinement, 
from 1.79 to 1.64/~, while RLS refinement reduced 
this difference to 1.69 ,~. The RNA atomic coordi- 
nates were greatly improved during MD refinement 
(Table 1). This limited test did not directly address 
the question of radius of convergence, but in view of 
the greater ability of MD refinement to move atoms 
to positions corresponding to lower R factors, it 
appears to be very likely that the MD-refinement 
radius of convergence is greater than that of RLS 
refinement, as has been observed with crystallo- 
graphic data (Brfinger, Kuriyan & Karplus, 1987). 
The RLS method is not usually successful when an 
inaccurate starting model is refined against all avail- 
able diffraction data; a common practice is to start 
the refinement using only low-resolution data and 
gradually to add the higher-resolution data as the 
refinement progresses. This procedure increases the 
initial radius of convergence but requires much more 
time and frequent model rebuilding. In contrast to 

RLS, MD refinement can be started with all available 
diffraction data without a significant reduction of the 
radius of convergence. Similar results have been 
obtained for MD refinement using crystallographic 
data (Gros, Fujinaga, Dijkstra, Kalk & Hol, 1989; 
Bri.inger, Krukowski & Erickson, 1990). 

Although the geometry of the refined model was 
generally excellent, the systematic errors in the 
lengths of some of the C~-Co bonds associated with 
forbidden dihedral angles in the main chain were a 
matter of concern. Close contacts between side-chain 
atoms and main-chain atoms were apparently re- 
solved by pushing the side chain away from the main 
chain, which elongated the C~-C0 bond. In practice, 
it has been necessary to correct these dihedral angles 
and other minor geometric problems by manual inter- 
vention followed by further refinement (Wang, 
Pattanayek & Stubbs, 1992). 

The refinement did not converge to an R factor of 
zero, even though no errors were introduced into the 
simulated intensity data set. In particular, the altered 
loop structure between residues 103 and 106 in the 
initial model was not corrected. This observation 
suggests that the energy barrier between the altered 
loop structure and the correct structure was too high 
to be overcome under the refinement conditions used. 
However, the MD refinement moved many atoms to 
positions close to the true positions of other atoms 
[compare Figs. l ( a )  and 7(a)].  This phenomenon 
was seen in many parts of the structure. The MD 
refinement moved the structure to a local energy 
minimum rather than the global energy minimum but, 
in the local energy minimum, most of the atoms were 
located in the electron density of the true structure. 
The refined structure therefore allowed the calcula- 
tion of greatly improved phases and thus improved 
electron density maps, as is evident in Figs. 6 and 7. 
Some of the errors of refined mislocated atoms could 
easily be corrected from the improved electron 
density maps and a model improved in this way could 
serve as a starting point for a second round of 
refinement. 

The high energy barriers between the starting struc- 
ture and the true structure may be attributed to the 
compactness of the TMV particle. Since this compact- 
ness is typical of many biological filamentous assem- 
blies, these barriers should be expected in most 
fiber diffraction refinements. In crystals of macro- 
molecules, a large portion of the space between pro- 
tein subunits is occupied by solvent molecules. These 
solvent molecules are not usually considered in 
molecular dynamics refinements, so the empty spaces 
in the crystal lattice can allow thermal expansion of 
the protein molecules during refinement at high tem- 
peratures without explicitly considering thermal 
expansion of the crystal. In contrast, the coat protein 
molecules in helical viruses are usually folded into a 
relatively compact structure and the protein subunits 
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in turn are packed  into a very compact  helical aggre- 
gate, with much  less space for molecular  dynamics  
refinement to move the atoms within the particle. The 
energy barriers  caused by the close contacts are so 
high that  increasing the starting tempera ture  without  
allowing thermal  expansion of  the particle would  not 
be expected to overcome them. 

In summary ,  molecular  dynamics  refinement 
against  fiber diffraction has been shown to be an 
effective means  of  structure determinat ion.  Even 
when the initial structure is too far  f rom the true 
structure to allow direct refinement,  the method  is 
able to find local min ima that  resemble the true struc- 
ture sufficiently to allow improved phasing and  thus 
lead to interpretable difference maps.  

We thank  Axel Briinger, Lee Makowski  and Rekha  
Pa t tanayek  for valuable  discussions. This work was 
suppor ted  by N S F  grants DIR-8915800 and DIR-  
9011014. 
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Abstract 

Powder  X-ray  diffraction da ta  for co rundum were 
collected by a variety of  methods  and reduced to 
structure ampli tudes  by two profile-fitting techniques.  
The resulting averaged powder -da ta  set was merged 
with three different single-crystal da ta  sets to assess 

the improvements  possible over least-squares 
model l ing of  extinction for accurate  electron densi ty 
analysis of  minerals.  With reference to the deforma-  
tion electron density derived from mult ipole 
refinements,  it is concluded that  this strategy offers 
advantages  over the post facto modell ing of  severe 
extinction effects commonly  observed in such 
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